

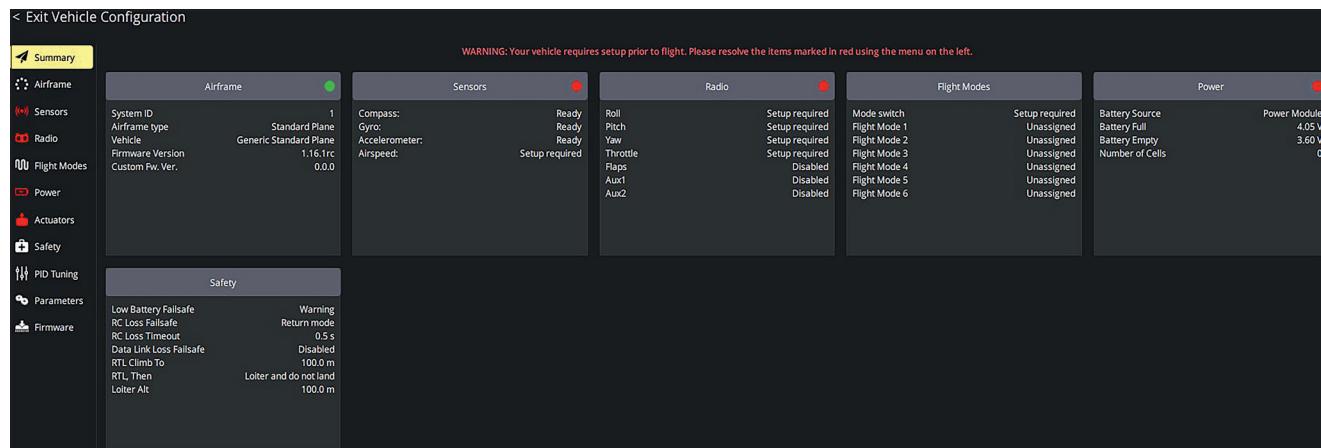


# QUICK SETUP GUIDE



for  
**PX4**




**POWERCUBE ONE / POWERCUBE VR**

This short manual shows the necessary steps to get our two carrier boards running with **QGroundControl** and **PX4**.

These steps must be completed before proceeding with the instructions:

- **Select the aircraft type**
- **Calibrate the accelerometers**

You will see this screen once these steps have been completed:



< Exit Vehicle Configuration

**Summary**

**Airframe**

System ID: 1  
Airframe type: Standard Plane  
Vehicle: Generic Standard Plane  
Firmware Version: 1.16.1rc  
Custom Fw. Ver: 0.0.0

**Sensors**

Compass: Ready  
Gyro: Ready  
Accelerometer: Ready  
Airspeed: Setup required

**Radio**

Roll: Setup required  
Pitch: Setup required  
yaw: Setup required  
Throttle: Setup required  
Flaps: Disabled  
Aux1: Disabled  
Aux2: Disabled

**Flight Modes**

Mode switch: Unassigned  
Flight Mode 1: Unassigned  
Flight Mode 2: Unassigned  
Flight Mode 3: Unassigned  
Flight Mode 4: Unassigned  
Flight Mode 5: Unassigned  
Flight Mode 6: Unassigned

**Power**

Battery Source: Battery Full  
Power Module: 4.05 V  
Battery Empty: 3.60 V  
Number of Cells: 0

**Safety**

Low Battery Fallsafe: Warning  
RC Loss Fallsafe: Return mode  
RC Loss Timeout: 0.5 s  
Data Link Loss Fallsafe: Disabled  
RTL Climb To: 100.0 m  
RTL Then Loiter Alt: Loiter and do not land 100.0 m

WARNING: Your vehicle requires setup prior to flight. Please resolve the items marked in red using the menu on the left.

## 1. Activate the S.BUS output

PWM\_SBUS\_MODE

Enabled

Set to 1 to enable S.BUS version 1 output instead of RSSI.

Default: 0

Warning: Modifying values while vehicle is in flight can lead to vehicle instability and possible vehicle loss. Make sure you know what you are doing and double-check your values before Save!

Advanced settings

## 2. Calibrate your radio

Depending on the selected aircraft type you have to learn your controls to the Flightcomputer. Example:

Radio Config

Radio Setup is used to calibrate your transmitter. It also assign channels for Roll, Pitch, Yaw and Throttle vehicle control as well as determining whether they are reversed.

Attitude Controls

Roll

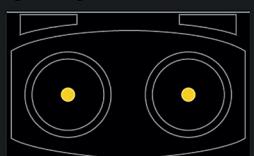
Pitch

Yaw

Throttle

Additional Radio setup:

Raps channel


AUX1 Passthrough RC channel

AUX2 Passthrough RC channel

PARAM1 tuning channel

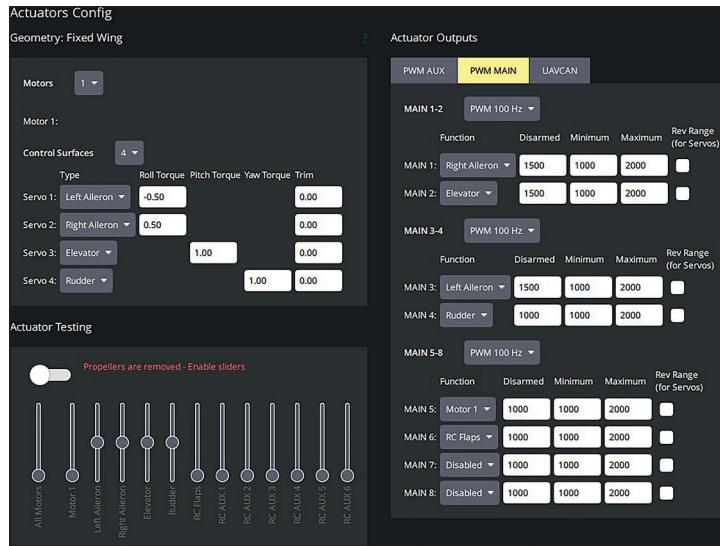
PARAM2 tuning channel

PARAM3 tuning channel

Mode 1 Mode 2


Channel Monitor

|    |                                  |    |                                  |
|----|----------------------------------|----|----------------------------------|
| 1  | <input type="button" value="•"/> | 2  | <input type="button" value="•"/> |
| 3  | <input type="button" value="•"/> | 4  | <input type="button" value="•"/> |
| 5  | <input type="button" value="•"/> | 6  | <input type="button" value="•"/> |
| 7  | <input type="button" value="•"/> | 8  | <input type="button" value="•"/> |
| 9  | <input type="button" value="•"/> | 10 | <input type="button" value="•"/> |
| 11 | <input type="button" value="•"/> | 12 | <input type="button" value="•"/> |
| 13 | <input type="button" value="•"/> | 14 | <input type="button" value="•"/> |
| 15 | <input type="button" value="•"/> | 16 | <input type="button" value="•"/> |
| 17 | <input type="button" value="•"/> | 18 | <input type="button" value="•"/> |


Once finished you should be able to control the outputs already in the Bypass mode.

**Note:** If the PowerCube is in standard configuration the channels will show up in following pattern:

- 1 = Output A
- 2 = Output B
- 3 = Output C ...

### 3. Set your Control functions

Depending on your aircraft type and your radio control channel assignment you have to set the controls in the flight computer.



The screenshot shows the 'Actuators Config' software interface for a 'Fixed Wing' aircraft. It consists of two main panels: 'Actuators Config' on the left and 'Actuator Outputs' on the right.

**Actuators Config (Left Panel):**

- Geometry:** Fixed Wing
- Motors:** 1 (selected)
- Motor 1:**
  - Control Surfaces:** 4 (selected)
  - Type:** Roll Torque, Pitch Torque, Yaw Torque, Trim
  - Servo 1:** Left Aileron, -0.50, 0.00
  - Servo 2:** Right Aileron, 0.50, 0.00
  - Servo 3:** Elevator, 1.00, 0.00
  - Servo 4:** Rudder, 1.00, 0.00
- Actuator Testing:**
  - Propellers are removed - Enable sliders**
  - Sliders for All Motors, Motor 1, Left Aileron, Right Aileron, Elevator, Rudder, RC Flaps, RC A/D 1, RC A/D 2, RC A/D 3, RC A/D 4, RC A/D 5, RC A/D 6.

**Actuator Outputs (Right Panel):**

- PWM AUX, PWM MAIN (selected), UAVCAN**
- MAIN 1-2 PWM 100 Hz**

| Function              | Disarmed | Minimum | Maximum | Rev Range (for Servos)   |
|-----------------------|----------|---------|---------|--------------------------|
| MAIN 1: Right Aileron | 1500     | 1000    | 2000    | <input type="checkbox"/> |
| MAIN 2: Elevator      | 1500     | 1000    | 2000    | <input type="checkbox"/> |
- MAIN 3-4 PWM 100 Hz**

| Function             | Disarmed | Minimum | Maximum | Rev Range (for Servos)   |
|----------------------|----------|---------|---------|--------------------------|
| MAIN 3: Left Aileron | 1500     | 1000    | 2000    | <input type="checkbox"/> |
| MAIN 4: Rudder       | 1000     | 1000    | 2000    | <input type="checkbox"/> |
- MAIN 5-8 PWM 100 Hz**

| Function         | Disarmed | Minimum | Maximum | Rev Range (for Servos)   |
|------------------|----------|---------|---------|--------------------------|
| MAIN 5: Motor 1  | 1000     | 1000    | 2000    | <input type="checkbox"/> |
| MAIN 6: RC Flaps | 1000     | 1000    | 2000    | <input type="checkbox"/> |
| MAIN 7: Disabled | 1000     | 1000    | 2000    | <input type="checkbox"/> |
| MAIN 8: Disabled | 1000     | 1000    | 2000    | <input type="checkbox"/> |

#### 4. Set the battery monitor

Unfortunately, PX4 doesn't support the full DroneCan messages for battery status.

Only one of the two batteries can be seen in the telemetry fields on the main screen.

Using the analog inputs from the Cube shows the correct analog data in the MavLink console

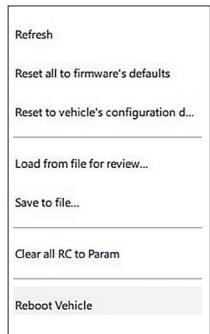
**[board\_adc test]** but doesn't show them in the telemetry fields on the main screen.

To show at least one of the two batteries activate the CAN-Bus function:

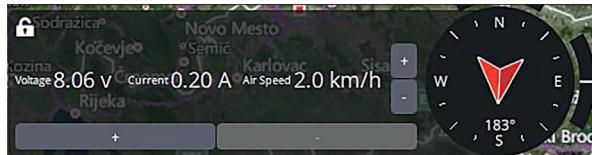
|                   |                        |                                              |
|-------------------|------------------------|----------------------------------------------|
| UAVCAN_BITRATE    | 1000000 bit/s          | UAVCAN CAN bus bitrate                       |
| UAVCAN_ENABLE     | Sensors Automatic ...  | UAVCAN mode                                  |
| UAVCAN_LGT_ANTCI  | When autopilot is p... | UAVCAN ANTI_COLLISION light operating mode   |
| UAVCAN_LGT_LAND   | Always off             | UAVCAN LIGHT_ID_LANDING light operating mode |
| UAVCAN_LGT_NAV    | Always on              | UAVCAN RIGHT_OF_WAY light operating mode     |
| UAVCAN_LGT_STROB  | When autopilot is a... | UAVCAN STROBE light operating mode           |
| UAVCAN_NODE_ID    | 1                      | UAVCAN Node ID                               |
| UAVCAN_PUB_ARM    | Disabled               | publish Arming Status stream                 |
| UAVCAN_PUB_MBD    | Disabled               | publish moving baseline data RTCM stream     |
| UAVCAN_PUB_RTCM   | Disabled               | publish RTCM stream                          |
| UAVCAN_SUB_ASPEED | Enabled                | subscription airspeed                        |
| UAVCAN_SUB_BARO   | Disabled               | subscription barometer                       |
| UAVCAN_SUB_BAT    | Raw data               | subscription battery                         |
| UAVCAN_SUB_BTN    | Disabled               | subscription button                          |
| UAVCAN_SUB_DPRES  | Disabled               | subscription differential pressure           |
| UAVCAN_SUB_FLOW   | Disabled               | subscription flow                            |
| UAVCAN_SUB_FUEL   | Disabled               | subscription fuel tank                       |
| UAVCAN_SUB_GPS    | Enabled                | subscription GPS                             |
| UAVCAN_SUB_GPS_R  | Enabled                | subscription GPS Relative                    |
| UAVCAN_SUB_HYDRO  | Disabled               | subscription hygrometer                      |
| UAVCAN_SUB_ICE    | Disabled               | subscription ICE                             |
| UAVCAN_SUB_IMU    | Disabled               | subscription IMU                             |
| UAVCAN_SUB_MAG    | Enabled                | subscription magnetometer                    |
| UAVCAN_SUB_RNG    | Disabled               | subscription range finder                    |

In this example we use the CAN-ASA as an airspeed sensor, for this we activate **UAVCAN\_SUB\_ASPEED**.

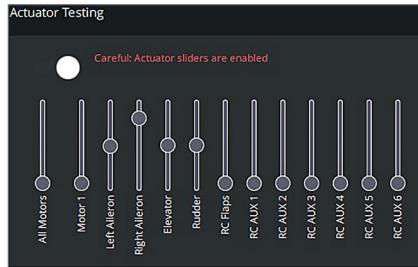
**Note:** Without an airspeed sensor, the flight computer cannot be activated unless the airspeed measurement is completely deactivated.


## 5. Set the battery type

As a next step – set the battery type:


|                  |             |                                                                   |
|------------------|-------------|-------------------------------------------------------------------|
| BAT1_A_PER_V     | -1.00000000 | Battery 1 current per volt (A/V)                                  |
| BAT1_CAPACITY    | -1 mAh      | Battery 1 capacity                                                |
| BAT1_N_CELLS     | 2S Battery  | Number of cells for battery 1                                     |
| BAT1_R_INTERNAL  | -1.0000 Ohm | Explicitly defines the per cell internal resistance for battery 1 |
| BAT1_SOURCE      | External    | Battery 1 monitoring source                                       |
| BAT1_V_CHARGED   | 4.05 V      | Full cell voltage                                                 |
| BAT1_V_DIV       | -1.00000000 | Battery 1 voltage divider (V divider)                             |
| BAT1_V_EMPTY     | 3.60 V      | Empty cell voltage                                                |
| BAT2_A_PER_V     | -1.00000000 | Battery 2 current per volt (A/V)                                  |
| BAT2_CAPACITY    | -1 mAh      | Battery 2 capacity                                                |
| BAT2_N_CELLS     | Unknown     | Number of cells for battery 2                                     |
| BAT2_R_INTERNAL  | -1.0000 Ohm | Explicitly defines the per cell internal resistance for battery 2 |
| BAT2_SOURCE      | Disabled    | Battery 2 monitoring source                                       |
| BAT2_V_CHARGED   | 4.05 V      | Full cell voltage                                                 |
| BAT2_V_DIV       | -1.00000000 | Battery 2 voltage divider (V divider)                             |
| BAT2_V_EMPTY     | 3.60 V      | Empty cell voltage                                                |
| BAT3_CAPACITY    | -1 mAh      | Battery 3 capacity                                                |
| BAT3_N_CELLS     | Unknown     | Number of cells for battery 3                                     |
| BAT3_R_INTERNAL  | -1.0000 Ohm | Explicitly defines the per cell internal resistance for battery 3 |
| BAT3_SOURCE      | Disabled    | Battery 3 monitoring source                                       |
| BAT3_V_CHARGED   | 4.05 V      | Full cell voltage                                                 |
| BAT3_V_EMPTY     | 3.60 V      | Empty cell voltage                                                |
| BAT_AVRG_CURRENT | 15.00 A     | Expected battery current in flight                                |
| BAT_CRIT THR     | 7.00 %      | Critical threshold                                                |
| BAT_EMERGEN THR  | 5.00 %      | Emergency threshold                                               |
| BAT_LOW THR      | 15.00 %     | Low threshold                                                     |

---


Restart the flight computer now:



You can see the battery voltage here and in the Log-Data:



Also, you can manually check the servo outputs here:



## 6. Set a Flight mode

To control the outputs from the radio through the flight computer, two more things are necessary.

At least one flight mode (manual control) is necessary:



## 7. Arm the aircraft

Last but not least **ARM** the aircraft. If the default settings have not been changed, the model is **armed** using the rudder stick. Hold the rudder stick to the **right** for 2 seconds to arm the outputs. Hold it to the **left** for 2 seconds to **disarm** the outputs again.

**Ensure that no propellers are mounted during the setup phase if electric motors are used!**

Your PowerCube is now set up and ready for use. You can now adjust all other settings to suit your aircraft.

For technical questions you can contact us here:  
**[industrialsupport@powerbox-systems.com](mailto:industrialsupport@powerbox-systems.com)**

## **PowerBox-Systems GmbH**

Dr.-Friedrich-Drechsler-Straße 35  
86609 Donauwörth  
Germany

 +49-906-99 99 9-200

 @ sales@powerbox-systems.com

**[www.powerbox-systems.com](http://www.powerbox-systems.com)**